$QF$-proper classes and relative stable categories
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 8, Tome 281 (2001), pp. 133-153
Voir la notice du chapitre de livre
A relative version of Rickard's theorem is proved, namely, if $\omega$ is a quasi-Frobenius proper class of short sequences in an Abelian category $\mathscr A$, then $\omega$-stable category of the category $\mathscr A$, is a quotient category of the relative bounded derived category $D^b_{\omega}(\mathscr A)$.
@article{ZNSL_2001_281_a5,
author = {A. I. Generalov},
title = {$QF$-proper classes and relative stable categories},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {133--153},
year = {2001},
volume = {281},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a5/}
}
A. I. Generalov. $QF$-proper classes and relative stable categories. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 8, Tome 281 (2001), pp. 133-153. http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a5/