$QF$-proper classes and relative stable categories
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 8, Tome 281 (2001), pp. 133-153

Voir la notice de l'article provenant de la source Math-Net.Ru

A relative version of Rickard's theorem is proved, namely, if $\omega$ is a quasi-Frobenius proper class of short sequences in an Abelian category $\mathscr A$, then $\omega$-stable category of the category $\mathscr A$, is a quotient category of the relative bounded derived category $D^b_{\omega}(\mathscr A)$.
@article{ZNSL_2001_281_a5,
     author = {A. I. Generalov},
     title = {$QF$-proper classes and relative stable categories},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {133--153},
     publisher = {mathdoc},
     volume = {281},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a5/}
}
TY  - JOUR
AU  - A. I. Generalov
TI  - $QF$-proper classes and relative stable categories
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 133
EP  - 153
VL  - 281
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a5/
LA  - ru
ID  - ZNSL_2001_281_a5
ER  - 
%0 Journal Article
%A A. I. Generalov
%T $QF$-proper classes and relative stable categories
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 133-153
%V 281
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a5/
%G ru
%F ZNSL_2001_281_a5
A. I. Generalov. $QF$-proper classes and relative stable categories. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 8, Tome 281 (2001), pp. 133-153. http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a5/