$QF$-proper classes and relative stable categories
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 8, Tome 281 (2001), pp. 133-153
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A relative version of Rickard's theorem is proved, namely, if $\omega$ is a quasi-Frobenius proper class of short sequences in an Abelian category $\mathscr A$, then $\omega$-stable category of the category $\mathscr A$,  is a quotient category of the relative bounded derived category $D^b_{\omega}(\mathscr A)$.
			
            
            
            
          
        
      @article{ZNSL_2001_281_a5,
     author = {A. I. Generalov},
     title = {$QF$-proper classes and relative stable categories},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {133--153},
     publisher = {mathdoc},
     volume = {281},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a5/}
}
                      
                      
                    A. I. Generalov. $QF$-proper classes and relative stable categories. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 8, Tome 281 (2001), pp. 133-153. http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a5/