A note on almost regular group rings
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 8, Tome 281 (2001), pp. 128-132
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the group ring $R=AG$ is an almost regular ring if and only if: (i) the ring $A$ is almost regular, (ii) the group $G$ is locally finite and (iii) an order of any finite subgroup $H$ of the group $G$ is a unit in $A$.
@article{ZNSL_2001_281_a4,
author = {G. A. Garkusha},
title = {A note on almost regular group rings},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {128--132},
publisher = {mathdoc},
volume = {281},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a4/}
}
G. A. Garkusha. A note on almost regular group rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 8, Tome 281 (2001), pp. 128-132. http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a4/