A note on almost regular group rings
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 8, Tome 281 (2001), pp. 128-132

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the group ring $R=AG$ is an almost regular ring if and only if: (i) the ring $A$ is almost regular, (ii) the group $G$ is locally finite and (iii) an order of any finite subgroup $H$ of the group $G$ is a unit in $A$.
@article{ZNSL_2001_281_a4,
     author = {G. A. Garkusha},
     title = {A note on almost regular group rings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {128--132},
     publisher = {mathdoc},
     volume = {281},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a4/}
}
TY  - JOUR
AU  - G. A. Garkusha
TI  - A note on almost regular group rings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 128
EP  - 132
VL  - 281
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a4/
LA  - ru
ID  - ZNSL_2001_281_a4
ER  - 
%0 Journal Article
%A G. A. Garkusha
%T A note on almost regular group rings
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 128-132
%V 281
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a4/
%G ru
%F ZNSL_2001_281_a4
G. A. Garkusha. A note on almost regular group rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 8, Tome 281 (2001), pp. 128-132. http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a4/