Hilbert symbol in a complete multidimensional field for an arbitrary prime number. Part~I
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 8, Tome 281 (2001), pp. 5-34

Voir la notice de l'article provenant de la source Math-Net.Ru

In the first part of this article we discuss two different definitions of Hilbert symbol and prove their equivalence. The second part is devoted to the detailed consideration of the one-dimensional case for an arbitrary prime number $p$ (odd as well as even). At the end of the article we give the explicit formulas in the general case of a multidimensional local field for the both different and mixed characteristic cases for an arbitrary prime number.
@article{ZNSL_2001_281_a0,
     author = {T. B. Belyaeva and S. V. Vostokov},
     title = {Hilbert symbol in a complete multidimensional field for an arbitrary prime number. {Part~I}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--34},
     publisher = {mathdoc},
     volume = {281},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a0/}
}
TY  - JOUR
AU  - T. B. Belyaeva
AU  - S. V. Vostokov
TI  - Hilbert symbol in a complete multidimensional field for an arbitrary prime number. Part~I
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 5
EP  - 34
VL  - 281
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a0/
LA  - ru
ID  - ZNSL_2001_281_a0
ER  - 
%0 Journal Article
%A T. B. Belyaeva
%A S. V. Vostokov
%T Hilbert symbol in a complete multidimensional field for an arbitrary prime number. Part~I
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 5-34
%V 281
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a0/
%G ru
%F ZNSL_2001_281_a0
T. B. Belyaeva; S. V. Vostokov. Hilbert symbol in a complete multidimensional field for an arbitrary prime number. Part~I. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 8, Tome 281 (2001), pp. 5-34. http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a0/