Hilbert symbol in a complete multidimensional field for an arbitrary prime number. Part I
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 8, Tome 281 (2001), pp. 5-34
Voir la notice du chapitre de livre
In the first part of this article we discuss two different definitions of Hilbert symbol and prove their equivalence. The second part is devoted to the detailed consideration of the one-dimensional case for an arbitrary prime number $p$ (odd as well as even). At the end of the article we give the explicit formulas in the general case of a multidimensional local field for the both different and mixed characteristic cases for an arbitrary prime number.
@article{ZNSL_2001_281_a0,
author = {T. B. Belyaeva and S. V. Vostokov},
title = {Hilbert symbol in a complete multidimensional field for an arbitrary prime number. {Part~I}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--34},
year = {2001},
volume = {281},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a0/}
}
TY - JOUR AU - T. B. Belyaeva AU - S. V. Vostokov TI - Hilbert symbol in a complete multidimensional field for an arbitrary prime number. Part I JO - Zapiski Nauchnykh Seminarov POMI PY - 2001 SP - 5 EP - 34 VL - 281 UR - http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a0/ LA - ru ID - ZNSL_2001_281_a0 ER -
T. B. Belyaeva; S. V. Vostokov. Hilbert symbol in a complete multidimensional field for an arbitrary prime number. Part I. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 8, Tome 281 (2001), pp. 5-34. http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a0/