Hilbert symbol in a complete multidimensional field for an arbitrary prime number. Part I
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 8, Tome 281 (2001), pp. 5-34
Cet article a éte moissonné depuis la source Math-Net.Ru
In the first part of this article we discuss two different definitions of Hilbert symbol and prove their equivalence. The second part is devoted to the detailed consideration of the one-dimensional case for an arbitrary prime number $p$ (odd as well as even). At the end of the article we give the explicit formulas in the general case of a multidimensional local field for the both different and mixed characteristic cases for an arbitrary prime number.
@article{ZNSL_2001_281_a0,
author = {T. B. Belyaeva and S. V. Vostokov},
title = {Hilbert symbol in a complete multidimensional field for an arbitrary prime number. {Part~I}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--34},
year = {2001},
volume = {281},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a0/}
}
TY - JOUR AU - T. B. Belyaeva AU - S. V. Vostokov TI - Hilbert symbol in a complete multidimensional field for an arbitrary prime number. Part I JO - Zapiski Nauchnykh Seminarov POMI PY - 2001 SP - 5 EP - 34 VL - 281 UR - http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a0/ LA - ru ID - ZNSL_2001_281_a0 ER -
T. B. Belyaeva; S. V. Vostokov. Hilbert symbol in a complete multidimensional field for an arbitrary prime number. Part I. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 8, Tome 281 (2001), pp. 5-34. http://geodesic.mathdoc.fr/item/ZNSL_2001_281_a0/