Classification of totally geodesic surfaces in the manifold of directions in physical space
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 163-172
Cet article a éte moissonné depuis la source Math-Net.Ru
The Grassmannian of bevectors over the pseudo-Euclidean Mincowski space is considered and its two-dimensional totally geodesic submanifolds are classified. The family of such surfaces is described in the language of the affine geometry of three-space.
@article{ZNSL_2001_280_a9,
author = {D. V. Ivanov and S. E. Kozlov},
title = {Classification of totally geodesic surfaces in the manifold of directions in physical space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {163--172},
year = {2001},
volume = {280},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a9/}
}
TY - JOUR AU - D. V. Ivanov AU - S. E. Kozlov TI - Classification of totally geodesic surfaces in the manifold of directions in physical space JO - Zapiski Nauchnykh Seminarov POMI PY - 2001 SP - 163 EP - 172 VL - 280 UR - http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a9/ LA - ru ID - ZNSL_2001_280_a9 ER -
D. V. Ivanov; S. E. Kozlov. Classification of totally geodesic surfaces in the manifold of directions in physical space. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 163-172. http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a9/