Classification of totally geodesic surfaces in the manifold of directions in physical space
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 163-172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Grassmannian of bevectors over the pseudo-Euclidean Mincowski space is considered and its two-dimensional totally geodesic submanifolds are classified. The family of such surfaces is described in the language of the affine geometry of three-space.
@article{ZNSL_2001_280_a9,
     author = {D. V. Ivanov and S. E. Kozlov},
     title = {Classification of totally geodesic surfaces in the manifold of directions in physical space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {163--172},
     year = {2001},
     volume = {280},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a9/}
}
TY  - JOUR
AU  - D. V. Ivanov
AU  - S. E. Kozlov
TI  - Classification of totally geodesic surfaces in the manifold of directions in physical space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 163
EP  - 172
VL  - 280
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a9/
LA  - ru
ID  - ZNSL_2001_280_a9
ER  - 
%0 Journal Article
%A D. V. Ivanov
%A S. E. Kozlov
%T Classification of totally geodesic surfaces in the manifold of directions in physical space
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 163-172
%V 280
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a9/
%G ru
%F ZNSL_2001_280_a9
D. V. Ivanov; S. E. Kozlov. Classification of totally geodesic surfaces in the manifold of directions in physical space. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 163-172. http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a9/