Cobordsims of embeddings with codimension~2.~II
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 157-162

Voir la notice de l'article provenant de la source Math-Net.Ru

A proof of the fact that the group $\operatorname{Emb}_5(\mathbb R^7)$ of cobordsims of embeddings of nonoriented 5-manifolds in $\mathbb R^7$ is cyclic of order 6 is announced. A geometric description of a generator of the group is presented.
@article{ZNSL_2001_280_a8,
     author = {M. Yu. Zvagel'skii},
     title = {Cobordsims of embeddings with {codimension~2.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {157--162},
     publisher = {mathdoc},
     volume = {280},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a8/}
}
TY  - JOUR
AU  - M. Yu. Zvagel'skii
TI  - Cobordsims of embeddings with codimension~2.~II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 157
EP  - 162
VL  - 280
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a8/
LA  - ru
ID  - ZNSL_2001_280_a8
ER  - 
%0 Journal Article
%A M. Yu. Zvagel'skii
%T Cobordsims of embeddings with codimension~2.~II
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 157-162
%V 280
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a8/
%G ru
%F ZNSL_2001_280_a8
M. Yu. Zvagel'skii. Cobordsims of embeddings with codimension~2.~II. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 157-162. http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a8/