A divisibility theorem for the Alexander polynomial of a plane algebraic curve
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 146-156

Voir la notice de l'article provenant de la source Math-Net.Ru

An upper estimate for the Alexander polynomial of an algebraic curve is obtained, which sharpens Libgober's estimate in terms of the local polynomials at the singular points of the curve: only those singular points may contribute to the Alexander polynomial of the curve that are in the excess of the hypothesis of Nory's vanishing theorem.
@article{ZNSL_2001_280_a7,
     author = {A. I. Degtyarev},
     title = {A divisibility theorem for the {Alexander} polynomial of a plane algebraic curve},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {146--156},
     publisher = {mathdoc},
     volume = {280},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a7/}
}
TY  - JOUR
AU  - A. I. Degtyarev
TI  - A divisibility theorem for the Alexander polynomial of a plane algebraic curve
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 146
EP  - 156
VL  - 280
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a7/
LA  - ru
ID  - ZNSL_2001_280_a7
ER  - 
%0 Journal Article
%A A. I. Degtyarev
%T A divisibility theorem for the Alexander polynomial of a plane algebraic curve
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 146-156
%V 280
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a7/
%G ru
%F ZNSL_2001_280_a7
A. I. Degtyarev. A divisibility theorem for the Alexander polynomial of a plane algebraic curve. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 146-156. http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a7/