A divisibility theorem for the Alexander polynomial of a plane algebraic curve
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 146-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An upper estimate for the Alexander polynomial of an algebraic curve is obtained, which sharpens Libgober's estimate in terms of the local polynomials at the singular points of the curve: only those singular points may contribute to the Alexander polynomial of the curve that are in the excess of the hypothesis of Nory's vanishing theorem.
@article{ZNSL_2001_280_a7,
     author = {A. I. Degtyarev},
     title = {A divisibility theorem for the {Alexander} polynomial of a plane algebraic curve},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {146--156},
     year = {2001},
     volume = {280},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a7/}
}
TY  - JOUR
AU  - A. I. Degtyarev
TI  - A divisibility theorem for the Alexander polynomial of a plane algebraic curve
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 146
EP  - 156
VL  - 280
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a7/
LA  - ru
ID  - ZNSL_2001_280_a7
ER  - 
%0 Journal Article
%A A. I. Degtyarev
%T A divisibility theorem for the Alexander polynomial of a plane algebraic curve
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 146-156
%V 280
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a7/
%G ru
%F ZNSL_2001_280_a7
A. I. Degtyarev. A divisibility theorem for the Alexander polynomial of a plane algebraic curve. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 146-156. http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a7/