Metrics of nonpositive curvature on graph-manifolds and electromagnetic fields on graphs
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 28-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A 3-dimensional graph-manifold $M$ consists of simple blocks, which are products of compact surfaces with boundary by the circle. The global structure $M$ can be as complicated as ane likes and is described by a graph which can be arbitrary. A metric of nonpositive curvature (an NPC-metric) on $M$, if it exists, is described essentially by a finite number of parameters satisfying a geometrization equation. In the paper, this equation is shown to be a discrete version of the Maxwell equations of classical electrodynamics, and its solutions, i.e., NPC-metrics on $M$, are critical configurations of the same sort of action that describes interaction of an electromagnetic field with a scalar charged field. This analogy is established in the framework of A. Connes' spectral calculs (noncommutative geometry).
@article{ZNSL_2001_280_a3,
     author = {S. V. Buyalo},
     title = {Metrics of nonpositive curvature on graph-manifolds and electromagnetic fields on graphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {28--72},
     year = {2001},
     volume = {280},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a3/}
}
TY  - JOUR
AU  - S. V. Buyalo
TI  - Metrics of nonpositive curvature on graph-manifolds and electromagnetic fields on graphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 28
EP  - 72
VL  - 280
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a3/
LA  - ru
ID  - ZNSL_2001_280_a3
ER  - 
%0 Journal Article
%A S. V. Buyalo
%T Metrics of nonpositive curvature on graph-manifolds and electromagnetic fields on graphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 28-72
%V 280
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a3/
%G ru
%F ZNSL_2001_280_a3
S. V. Buyalo. Metrics of nonpositive curvature on graph-manifolds and electromagnetic fields on graphs. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 28-72. http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a3/