On the topology of cycles in pseudolinear programs
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 239-250
Cet article a éte moissonné depuis la source Math-Net.Ru
By demand coming from the quasicrystal community, we present here a construction realizing an arbitrary oriented link in $\mathbb R^3$ by the graph of a 3d pseudolinear (or matroid) program. This gives a hint about possible “topological complexity” of rank 4 oriented matroids $\approx3d$ pseudoplane arrangements $\approx3d$ quasicrystal tilings.
@article{ZNSL_2001_280_a17,
author = {N. E. Mnev},
title = {On the topology of cycles in pseudolinear programs},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {239--250},
year = {2001},
volume = {280},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a17/}
}
N. E. Mnev. On the topology of cycles in pseudolinear programs. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 239-250. http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a17/