On the topology of cycles in pseudolinear programs
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 239-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

By demand coming from the quasicrystal community, we present here a construction realizing an arbitrary oriented link in $\mathbb R^3$ by the graph of a 3d pseudolinear (or matroid) program. This gives a hint about possible “topological complexity” of rank 4 oriented matroids $\approx3d$ pseudoplane arrangements $\approx3d$ quasicrystal tilings.
@article{ZNSL_2001_280_a17,
     author = {N. E. Mnev},
     title = {On the topology of cycles in pseudolinear programs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {239--250},
     year = {2001},
     volume = {280},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a17/}
}
TY  - JOUR
AU  - N. E. Mnev
TI  - On the topology of cycles in pseudolinear programs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 239
EP  - 250
VL  - 280
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a17/
LA  - en
ID  - ZNSL_2001_280_a17
ER  - 
%0 Journal Article
%A N. E. Mnev
%T On the topology of cycles in pseudolinear programs
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 239-250
%V 280
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a17/
%G en
%F ZNSL_2001_280_a17
N. E. Mnev. On the topology of cycles in pseudolinear programs. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 239-250. http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a17/