Planar sections of convex bodies and universal fibrations
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 219-233 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A conjecture on tautological vector bundles over Grassmannians, which generalizes the well-known Dvoretskii theorem, is stated, discussed, and proved in one nontrivial case: for the Grassmannian of 2-planes. It is also proved that every three-dimensional real normed space contains a two-dimensional subspace with Banach–Mazur distance from the Euclidean plane at most $\frac12\ln(4/3)$, and the estimate is sharp.
@article{ZNSL_2001_280_a15,
     author = {V. V. Makeev},
     title = {Planar sections of convex bodies and universal fibrations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {219--233},
     year = {2001},
     volume = {280},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a15/}
}
TY  - JOUR
AU  - V. V. Makeev
TI  - Planar sections of convex bodies and universal fibrations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 219
EP  - 233
VL  - 280
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a15/
LA  - ru
ID  - ZNSL_2001_280_a15
ER  - 
%0 Journal Article
%A V. V. Makeev
%T Planar sections of convex bodies and universal fibrations
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 219-233
%V 280
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a15/
%G ru
%F ZNSL_2001_280_a15
V. V. Makeev. Planar sections of convex bodies and universal fibrations. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 219-233. http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a15/