Sectional curvatures and the separation set of the complex projective space in its Plücker model
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 186-193
Cet article a éte moissonné depuis la source Math-Net.Ru
The Plücker embedding of the complex projective space $\mathbb CP^{k-1}$ in the Grassmannian $G^+_{2,2k}$ of bivectors is used for proving several theorems on the relationship between the complex structure of $\mathbb CP^{k-1}$ and its Riemannian geometry. It is shown that the separation set of $\mathbb CP^{k-1}$ in the Plücker model is a face of $G^+_{2,2k}$ for a certain calibration.
@article{ZNSL_2001_280_a12,
author = {S. E. Kozlov and M. Yu. Nikanorova},
title = {Sectional curvatures and the separation set of the complex projective space in its {Pl\"ucker} model},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {186--193},
year = {2001},
volume = {280},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a12/}
}
TY - JOUR AU - S. E. Kozlov AU - M. Yu. Nikanorova TI - Sectional curvatures and the separation set of the complex projective space in its Plücker model JO - Zapiski Nauchnykh Seminarov POMI PY - 2001 SP - 186 EP - 193 VL - 280 UR - http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a12/ LA - ru ID - ZNSL_2001_280_a12 ER -
S. E. Kozlov; M. Yu. Nikanorova. Sectional curvatures and the separation set of the complex projective space in its Plücker model. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 186-193. http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a12/