Stationarity of curvature of two-dimensional totally geodesic submanifolds in the Grassmannian of bevectors
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 175-185
Cet article a éte moissonné depuis la source Math-Net.Ru
An infinitesimal criterion indicating when a two-dimensional submanifold of a Riemannian symmetric space is totally geodesic is given. As an application, the classification of two-dimensional totally geodesic submanifolds of the Grassmannian of bevectors is given in a new way, and it is proved that the section al curvature takes stationary values on tangent spaces of such submanifolds.
@article{ZNSL_2001_280_a11,
author = {S. E. Kozlov},
title = {Stationarity of curvature of two-dimensional totally geodesic submanifolds in the {Grassmannian} of bevectors},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {175--185},
year = {2001},
volume = {280},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a11/}
}
TY - JOUR AU - S. E. Kozlov TI - Stationarity of curvature of two-dimensional totally geodesic submanifolds in the Grassmannian of bevectors JO - Zapiski Nauchnykh Seminarov POMI PY - 2001 SP - 175 EP - 185 VL - 280 UR - http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a11/ LA - ru ID - ZNSL_2001_280_a11 ER -
S. E. Kozlov. Stationarity of curvature of two-dimensional totally geodesic submanifolds in the Grassmannian of bevectors. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 175-185. http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a11/