Stationarity of curvature of two-dimensional totally geodesic submanifolds in the Grassmannian of bevectors
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 175-185 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An infinitesimal criterion indicating when a two-dimensional submanifold of a Riemannian symmetric space is totally geodesic is given. As an application, the classification of two-dimensional totally geodesic submanifolds of the Grassmannian of bevectors is given in a new way, and it is proved that the section al curvature takes stationary values on tangent spaces of such submanifolds.
@article{ZNSL_2001_280_a11,
     author = {S. E. Kozlov},
     title = {Stationarity of curvature of two-dimensional totally geodesic submanifolds in the {Grassmannian} of bevectors},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {175--185},
     year = {2001},
     volume = {280},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a11/}
}
TY  - JOUR
AU  - S. E. Kozlov
TI  - Stationarity of curvature of two-dimensional totally geodesic submanifolds in the Grassmannian of bevectors
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 175
EP  - 185
VL  - 280
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a11/
LA  - ru
ID  - ZNSL_2001_280_a11
ER  - 
%0 Journal Article
%A S. E. Kozlov
%T Stationarity of curvature of two-dimensional totally geodesic submanifolds in the Grassmannian of bevectors
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 175-185
%V 280
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a11/
%G ru
%F ZNSL_2001_280_a11
S. E. Kozlov. Stationarity of curvature of two-dimensional totally geodesic submanifolds in the Grassmannian of bevectors. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 7, Tome 280 (2001), pp. 175-185. http://geodesic.mathdoc.fr/item/ZNSL_2001_280_a11/