Universal boundary sets in the generalized Steiner problem
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 168-182

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every simple binary tree is realized by a nongenerate minimal parametric net spanning the vertices of a regular simplex.
@article{ZNSL_2001_279_a9,
     author = {G. A. Karpunin},
     title = {Universal boundary sets in the generalized {Steiner} problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {168--182},
     publisher = {mathdoc},
     volume = {279},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a9/}
}
TY  - JOUR
AU  - G. A. Karpunin
TI  - Universal boundary sets in the generalized Steiner problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 168
EP  - 182
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a9/
LA  - ru
ID  - ZNSL_2001_279_a9
ER  - 
%0 Journal Article
%A G. A. Karpunin
%T Universal boundary sets in the generalized Steiner problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 168-182
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a9/
%G ru
%F ZNSL_2001_279_a9
G. A. Karpunin. Universal boundary sets in the generalized Steiner problem. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 168-182. http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a9/