An integral formula for the complex intersection number of real cycles in a real algebraic variety with topologically rational singularities
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 241-245

Voir la notice de l'article provenant de la source Math-Net.Ru

A formula of type indicated in the title is presented and discussed.
@article{ZNSL_2001_279_a15,
     author = {S. M. Finashin},
     title = {An integral formula for the complex intersection number of real cycles in a real algebraic variety with topologically rational singularities},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {241--245},
     publisher = {mathdoc},
     volume = {279},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a15/}
}
TY  - JOUR
AU  - S. M. Finashin
TI  - An integral formula for the complex intersection number of real cycles in a real algebraic variety with topologically rational singularities
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 241
EP  - 245
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a15/
LA  - ru
ID  - ZNSL_2001_279_a15
ER  - 
%0 Journal Article
%A S. M. Finashin
%T An integral formula for the complex intersection number of real cycles in a real algebraic variety with topologically rational singularities
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 241-245
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a15/
%G ru
%F ZNSL_2001_279_a15
S. M. Finashin. An integral formula for the complex intersection number of real cycles in a real algebraic variety with topologically rational singularities. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 241-245. http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a15/