An integral formula for the complex intersection number of real cycles in a real algebraic variety with topologically rational singularities
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 241-245
Voir la notice de l'article provenant de la source Math-Net.Ru
A formula of type indicated in the title is presented and discussed.
@article{ZNSL_2001_279_a15,
author = {S. M. Finashin},
title = {An integral formula for the complex intersection number of real cycles in a real algebraic variety with topologically rational singularities},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {241--245},
publisher = {mathdoc},
volume = {279},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a15/}
}
TY - JOUR AU - S. M. Finashin TI - An integral formula for the complex intersection number of real cycles in a real algebraic variety with topologically rational singularities JO - Zapiski Nauchnykh Seminarov POMI PY - 2001 SP - 241 EP - 245 VL - 279 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a15/ LA - ru ID - ZNSL_2001_279_a15 ER -
%0 Journal Article %A S. M. Finashin %T An integral formula for the complex intersection number of real cycles in a real algebraic variety with topologically rational singularities %J Zapiski Nauchnykh Seminarov POMI %D 2001 %P 241-245 %V 279 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a15/ %G ru %F ZNSL_2001_279_a15
S. M. Finashin. An integral formula for the complex intersection number of real cycles in a real algebraic variety with topologically rational singularities. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 241-245. http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a15/