The Reidemeister number of any automorphism of a Gromov hyperbolic group is infinite
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 229-240
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the number of twisted conjugancy classes is infinite for any automorphism of a nonelementary, Gromov hyperbolic group. An analog of the Selberg theory for twisted conjugacy classes is suggested.
@article{ZNSL_2001_279_a14,
author = {A. L. Fel'shtyn},
title = {The {Reidemeister} number of any automorphism of a {Gromov} hyperbolic group is infinite},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {229--240},
publisher = {mathdoc},
volume = {279},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a14/}
}
TY - JOUR AU - A. L. Fel'shtyn TI - The Reidemeister number of any automorphism of a Gromov hyperbolic group is infinite JO - Zapiski Nauchnykh Seminarov POMI PY - 2001 SP - 229 EP - 240 VL - 279 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a14/ LA - ru ID - ZNSL_2001_279_a14 ER -
A. L. Fel'shtyn. The Reidemeister number of any automorphism of a Gromov hyperbolic group is infinite. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 229-240. http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a14/