The Reidemeister number of any automorphism of a Gromov hyperbolic group is infinite
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 229-240

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the number of twisted conjugancy classes is infinite for any automorphism of a nonelementary, Gromov hyperbolic group. An analog of the Selberg theory for twisted conjugacy classes is suggested.
@article{ZNSL_2001_279_a14,
     author = {A. L. Fel'shtyn},
     title = {The {Reidemeister} number of any automorphism of a {Gromov} hyperbolic group is infinite},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {229--240},
     publisher = {mathdoc},
     volume = {279},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a14/}
}
TY  - JOUR
AU  - A. L. Fel'shtyn
TI  - The Reidemeister number of any automorphism of a Gromov hyperbolic group is infinite
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 229
EP  - 240
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a14/
LA  - ru
ID  - ZNSL_2001_279_a14
ER  - 
%0 Journal Article
%A A. L. Fel'shtyn
%T The Reidemeister number of any automorphism of a Gromov hyperbolic group is infinite
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 229-240
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a14/
%G ru
%F ZNSL_2001_279_a14
A. L. Fel'shtyn. The Reidemeister number of any automorphism of a Gromov hyperbolic group is infinite. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 229-240. http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a14/