Geometrisation of the mapping tori of Dehn twists on an infinite genus surfase
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 218-228
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the conditions under which an infinite graph manifold $M$ carries a metric of nonpositive bounded curvature having finite volume. In the case where $M$ is the mapping torus of a collection of Dehn twists on an infinite genus surface and the graph of $M$ is linear (i.e., homeomorphic to a line or a ray) a complete list of all such manifolds is obtained.
@article{ZNSL_2001_279_a13,
author = {P. V. Svetlov},
title = {Geometrisation of the mapping tori of {Dehn} twists on an infinite genus surfase},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {218--228},
publisher = {mathdoc},
volume = {279},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a13/}
}
P. V. Svetlov. Geometrisation of the mapping tori of Dehn twists on an infinite genus surfase. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 218-228. http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a13/