Geometrisation of the mapping tori of Dehn twists on an infinite genus surfase
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 218-228 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the conditions under which an infinite graph manifold $M$ carries a metric of nonpositive bounded curvature having finite volume. In the case where $M$ is the mapping torus of a collection of Dehn twists on an infinite genus surface and the graph of $M$ is linear (i.e., homeomorphic to a line or a ray) a complete list of all such manifolds is obtained.
@article{ZNSL_2001_279_a13,
     author = {P. V. Svetlov},
     title = {Geometrisation of the mapping tori of {Dehn} twists on an infinite genus surfase},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {218--228},
     year = {2001},
     volume = {279},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a13/}
}
TY  - JOUR
AU  - P. V. Svetlov
TI  - Geometrisation of the mapping tori of Dehn twists on an infinite genus surfase
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 218
EP  - 228
VL  - 279
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a13/
LA  - ru
ID  - ZNSL_2001_279_a13
ER  - 
%0 Journal Article
%A P. V. Svetlov
%T Geometrisation of the mapping tori of Dehn twists on an infinite genus surfase
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 218-228
%V 279
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a13/
%G ru
%F ZNSL_2001_279_a13
P. V. Svetlov. Geometrisation of the mapping tori of Dehn twists on an infinite genus surfase. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 218-228. http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a13/