A higher-order analog of the helicity number for a~pair of divergent-free vector fields
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 15-23

Voir la notice de l'article provenant de la source Math-Net.Ru

Pairs $B$, $\tilde B$ of divergent-free vector fields with compact support in $\mathbb R^3$ are considered. A higher-order analog $M(B,\tilde B)$ (of order 3) of the Gauss helicity number $H(B,\tilde B)=\int A\tilde B\,d\mathbb R^3$, $\operatorname{curl}(A)=B$, (of order 1) is constructed, which is invariant under volume-preserving diffeomorphisms. An integral expression for $M$ is given. A degree-four polynomial $m(B(x_1)$, $B(x_2)$, $\tilde B(\tilde x_1)$, $\tilde B(\tilde x_2))$, $x_1$, $x_2$, $\tilde x_1$, $\tilde x_2\in\mathbb R^3$, is defined, which is symmetric in the first and second pairs of variables separately. $M$ is the average value of $m$ over arbitrary configurations of points. Several conjectures clarifying the geometric meaning of the invariant and relating it with invariants of knots and links are stated.
@article{ZNSL_2001_279_a1,
     author = {P. M. Akhmet'ev},
     title = {A higher-order analog of the helicity number for a~pair of divergent-free vector fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {15--23},
     publisher = {mathdoc},
     volume = {279},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a1/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
TI  - A higher-order analog of the helicity number for a~pair of divergent-free vector fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 15
EP  - 23
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a1/
LA  - ru
ID  - ZNSL_2001_279_a1
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%T A higher-order analog of the helicity number for a~pair of divergent-free vector fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 15-23
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a1/
%G ru
%F ZNSL_2001_279_a1
P. M. Akhmet'ev. A higher-order analog of the helicity number for a~pair of divergent-free vector fields. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 15-23. http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a1/