A higher-order analog of the helicity number for a~pair of divergent-free vector fields
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 15-23
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Pairs $B$, $\tilde B$ of divergent-free vector fields with compact support in $\mathbb R^3$ are considered.
A higher-order analog $M(B,\tilde B)$ (of order 3) of the Gauss helicity number $H(B,\tilde B)=\int A\tilde
B\,d\mathbb R^3$, $\operatorname{curl}(A)=B$, (of order 1) is constructed, which is invariant under
volume-preserving diffeomorphisms. An integral expression for $M$ is given. A degree-four polynomial $m(B(x_1)$, $B(x_2)$, $\tilde B(\tilde x_1)$, $\tilde B(\tilde x_2))$, $x_1$, $x_2$, $\tilde x_1$, $\tilde x_2\in\mathbb R^3$, is defined, which is symmetric in the first and second pairs of variables separately.
$M$ is the average value of $m$ over arbitrary configurations of points. Several conjectures clarifying
the geometric meaning of the invariant and relating it with invariants of knots and links are stated.
			
            
            
            
          
        
      @article{ZNSL_2001_279_a1,
     author = {P. M. Akhmet'ev},
     title = {A higher-order analog of the helicity number for a~pair of divergent-free vector fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {15--23},
     publisher = {mathdoc},
     volume = {279},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a1/}
}
                      
                      
                    P. M. Akhmet'ev. A higher-order analog of the helicity number for a~pair of divergent-free vector fields. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 15-23. http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a1/