Probabilities of large deviations in Banach spaces
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 4, Tome 278 (2001), pp. 86-111

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem about the exact asymptotics of large derivatives of sums of independent random elements in a Banach space is proved. The results are a version of a Bentkus' and Rachkauskas' theorems.
@article{ZNSL_2001_278_a4,
     author = {M. S. Ermakov},
     title = {Probabilities of large deviations in {Banach} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {86--111},
     publisher = {mathdoc},
     volume = {278},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_278_a4/}
}
TY  - JOUR
AU  - M. S. Ermakov
TI  - Probabilities of large deviations in Banach spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 86
EP  - 111
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_278_a4/
LA  - ru
ID  - ZNSL_2001_278_a4
ER  - 
%0 Journal Article
%A M. S. Ermakov
%T Probabilities of large deviations in Banach spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 86-111
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_278_a4/
%G ru
%F ZNSL_2001_278_a4
M. S. Ermakov. Probabilities of large deviations in Banach spaces. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 4, Tome 278 (2001), pp. 86-111. http://geodesic.mathdoc.fr/item/ZNSL_2001_278_a4/