Limit theorems for maxima of sums and renewal processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 4, Tome 278 (2001), pp. 261-274

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $~\{X_i\}_{i=1,2,\dots}~$ be a sequence of  i.i.d. random variables, $S_n=X_1+\dots+X_n$, and $S_n\to+\infty$ a.s. We discuss necessary and sufficient conditions for the Kolmogorov and Marcinkiewicz–Zygmund type strong laws of large numbers and for the law of the iterated logarithm for renewal processes defined in two different ways.
@article{ZNSL_2001_278_a15,
     author = {A. N. Frolov and A. I. Martikainen and J. Steinebach},
     title = {Limit theorems for maxima of sums and renewal processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {261--274},
     publisher = {mathdoc},
     volume = {278},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_278_a15/}
}
TY  - JOUR
AU  - A. N. Frolov
AU  - A. I. Martikainen
AU  - J. Steinebach
TI  - Limit theorems for maxima of sums and renewal processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 261
EP  - 274
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_278_a15/
LA  - en
ID  - ZNSL_2001_278_a15
ER  - 
%0 Journal Article
%A A. N. Frolov
%A A. I. Martikainen
%A J. Steinebach
%T Limit theorems for maxima of sums and renewal processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 261-274
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_278_a15/
%G en
%F ZNSL_2001_278_a15
A. N. Frolov; A. I. Martikainen; J. Steinebach. Limit theorems for maxima of sums and renewal processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 4, Tome 278 (2001), pp. 261-274. http://geodesic.mathdoc.fr/item/ZNSL_2001_278_a15/