Conditions of the local asymptotic normality for Gaussian stationary random processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 4, Tome 278 (2001), pp. 225-247

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbf x[\cdot]$ be a stationary Gaussian process with zero mean and spectral density $f$, $\mathscr F$ be the $\sigma$-algebra, induced by random variables $\mathbf x[\varphi],\,\varphi\in D(R^1)$, $\mathscr F_t$, $t>0$, be the $\sigma$-algebra, induced by random variables $\mathbf x[\varphi],\operatorname{supp}\varphi\in[-t,t]$. We denote by $\mathscr P(f)$ the Gaussian measure on $\mathscr F$, generated by $\mathbf x$. Let $\mathscr P_t(f)$ be the restriction of $\mathscr P(f)$ on $\mathscr F_t$. Suppose nonnegative functions $f$ and $g$ are chosen by such a way that measures $\mathscr P_t(f)$ and $\mathscr P_t(g)$ are absolutely continuous and put $$ \mathscr D_t(f,g)=\ln\frac{d\mathscr P_t(f)}{d\mathscr P_t(g)}\,. $$ For a fixed $g(u)$ and $f(u)=f_t(u)$ close in some sense to $g(u)$ the asymptotic normality of $\mathscr D_t(f,g)$ is proved under some regularity conditions.
@article{ZNSL_2001_278_a13,
     author = {V. N. Solev and A. Zerbet},
     title = {Conditions of the local asymptotic normality for {Gaussian} stationary random  processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {225--247},
     publisher = {mathdoc},
     volume = {278},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_278_a13/}
}
TY  - JOUR
AU  - V. N. Solev
AU  - A. Zerbet
TI  - Conditions of the local asymptotic normality for Gaussian stationary random  processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 225
EP  - 247
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_278_a13/
LA  - ru
ID  - ZNSL_2001_278_a13
ER  - 
%0 Journal Article
%A V. N. Solev
%A A. Zerbet
%T Conditions of the local asymptotic normality for Gaussian stationary random  processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 225-247
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_278_a13/
%G ru
%F ZNSL_2001_278_a13
V. N. Solev; A. Zerbet. Conditions of the local asymptotic normality for Gaussian stationary random  processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 4, Tome 278 (2001), pp. 225-247. http://geodesic.mathdoc.fr/item/ZNSL_2001_278_a13/