Conditions of the local asymptotic normality for Gaussian stationary random processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 4, Tome 278 (2001), pp. 225-247
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathbf x[\cdot]$ be a stationary Gaussian process with zero mean and spectral density $f$, $\mathscr F$ be the $\sigma$-algebra, induced by random variables $\mathbf x[\varphi],\,\varphi\in D(R^1)$, $\mathscr F_t$, $t>0$, be the $\sigma$-algebra, induced by random variables $\mathbf x[\varphi],\operatorname{supp}\varphi\in[-t,t]$. We denote by $\mathscr P(f)$ the Gaussian measure on $\mathscr F$, generated by $\mathbf x$. Let $\mathscr P_t(f)$ be the restriction of $\mathscr P(f)$ on $\mathscr F_t$. Suppose nonnegative functions $f$ and $g$ are chosen by such a way that measures $\mathscr P_t(f)$ and $\mathscr P_t(g)$ are
absolutely continuous and put
$$
\mathscr D_t(f,g)=\ln\frac{d\mathscr P_t(f)}{d\mathscr P_t(g)}\,.
$$
For a fixed $g(u)$ and $f(u)=f_t(u)$ close in some sense to $g(u)$ the asymptotic normality of $\mathscr D_t(f,g)$ is proved under some regularity conditions.
@article{ZNSL_2001_278_a13,
author = {V. N. Solev and A. Zerbet},
title = {Conditions of the local asymptotic normality for {Gaussian} stationary random processes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {225--247},
publisher = {mathdoc},
volume = {278},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_278_a13/}
}
TY - JOUR AU - V. N. Solev AU - A. Zerbet TI - Conditions of the local asymptotic normality for Gaussian stationary random processes JO - Zapiski Nauchnykh Seminarov POMI PY - 2001 SP - 225 EP - 247 VL - 278 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2001_278_a13/ LA - ru ID - ZNSL_2001_278_a13 ER -
V. N. Solev; A. Zerbet. Conditions of the local asymptotic normality for Gaussian stationary random processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 4, Tome 278 (2001), pp. 225-247. http://geodesic.mathdoc.fr/item/ZNSL_2001_278_a13/