A polynomial lower bound for the size of any $k$-min-wise independent set of permutations
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part VI, Tome 277 (2001), pp. 104-116

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of $k$-min-wise independent set of permutations, which was introduced by A. Broder et al., is considered. A nontrivial polynomial lower bound for the smallest size of such sets is obtained.
@article{ZNSL_2001_277_a5,
     author = {S. A. Norin},
     title = {A polynomial lower bound for the size of any $k$-min-wise independent set of permutations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {104--116},
     publisher = {mathdoc},
     volume = {277},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_277_a5/}
}
TY  - JOUR
AU  - S. A. Norin
TI  - A polynomial lower bound for the size of any $k$-min-wise independent set of permutations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 104
EP  - 116
VL  - 277
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_277_a5/
LA  - ru
ID  - ZNSL_2001_277_a5
ER  - 
%0 Journal Article
%A S. A. Norin
%T A polynomial lower bound for the size of any $k$-min-wise independent set of permutations
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 104-116
%V 277
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_277_a5/
%G ru
%F ZNSL_2001_277_a5
S. A. Norin. A polynomial lower bound for the size of any $k$-min-wise independent set of permutations. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part VI, Tome 277 (2001), pp. 104-116. http://geodesic.mathdoc.fr/item/ZNSL_2001_277_a5/