A polynomial lower bound for the size of any $k$-min-wise independent set of permutations
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part VI, Tome 277 (2001), pp. 104-116
Cet article a éte moissonné depuis la source Math-Net.Ru
The notion of $k$-min-wise independent set of permutations, which was introduced by A. Broder et al., is considered. A nontrivial polynomial lower bound for the smallest size of such sets is obtained.
@article{ZNSL_2001_277_a5,
author = {S. A. Norin},
title = {A polynomial lower bound for the size of any $k$-min-wise independent set of permutations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {104--116},
year = {2001},
volume = {277},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_277_a5/}
}
S. A. Norin. A polynomial lower bound for the size of any $k$-min-wise independent set of permutations. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part VI, Tome 277 (2001), pp. 104-116. http://geodesic.mathdoc.fr/item/ZNSL_2001_277_a5/