A polynomial lower bound for the size of any $k$-min-wise independent set of permutations
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part VI, Tome 277 (2001), pp. 104-116
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The notion of $k$-min-wise independent set of permutations, which was introduced by A. Broder et al., is considered. A nontrivial polynomial lower bound for the smallest size of such sets is obtained.
			
            
            
            
          
        
      @article{ZNSL_2001_277_a5,
     author = {S. A. Norin},
     title = {A polynomial lower bound for the size of any $k$-min-wise independent set of permutations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {104--116},
     publisher = {mathdoc},
     volume = {277},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_277_a5/}
}
                      
                      
                    S. A. Norin. A polynomial lower bound for the size of any $k$-min-wise independent set of permutations. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part VI, Tome 277 (2001), pp. 104-116. http://geodesic.mathdoc.fr/item/ZNSL_2001_277_a5/
