Algorithms for SAT and upper bounds on their complexity
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part VI, Tome 277 (2001), pp. 14-46
Voir la notice de l'article provenant de la source Math-Net.Ru
We survey recent algorithms for the propositional satisfiability problem, in particular algorithms that have the best current worst-case upper bounds on their complexity. We also discuss some related issues: the derandomization of the algorithm of Paturi, Pudlák, Saks and Zane, the Valiant-Vazirani Lemma, and
random walk algorithms with the “back button”.
@article{ZNSL_2001_277_a1,
author = {M. A. Vsemirnov and E. A. Hirsch and E. Ya. Dantsin and S. V. Ivanov},
title = {Algorithms for {SAT} and upper bounds on their complexity},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {14--46},
publisher = {mathdoc},
volume = {277},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_277_a1/}
}
TY - JOUR AU - M. A. Vsemirnov AU - E. A. Hirsch AU - E. Ya. Dantsin AU - S. V. Ivanov TI - Algorithms for SAT and upper bounds on their complexity JO - Zapiski Nauchnykh Seminarov POMI PY - 2001 SP - 14 EP - 46 VL - 277 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2001_277_a1/ LA - ru ID - ZNSL_2001_277_a1 ER -
M. A. Vsemirnov; E. A. Hirsch; E. Ya. Dantsin; S. V. Ivanov. Algorithms for SAT and upper bounds on their complexity. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part VI, Tome 277 (2001), pp. 14-46. http://geodesic.mathdoc.fr/item/ZNSL_2001_277_a1/