An equality of condenser capacity and condenser module on surface
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 17, Tome 276 (2001), pp. 112-133
Cet article a éte moissonné depuis la source Math-Net.Ru
We study properties of the capacity of a condenser and of the module of a family of curves on a surface. Some properties of the spaces $L_{\varphi,F}(G)$ and $L^1_{\varphi,F}(G)$ are established. These properties are applied in proving that the capacity and module of a capacity on a surface are equal.
@article{ZNSL_2001_276_a5,
author = {Yu. V. Dymchenko},
title = {An equality of condenser capacity and condenser module on surface},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {112--133},
year = {2001},
volume = {276},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_276_a5/}
}
Yu. V. Dymchenko. An equality of condenser capacity and condenser module on surface. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 17, Tome 276 (2001), pp. 112-133. http://geodesic.mathdoc.fr/item/ZNSL_2001_276_a5/