The representation of integers by positive quaternary quadratic forms
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 17, Tome 276 (2001), pp. 291-299
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $f(x,y,x,w)=x^2+y^2+z^2+D\omega^2$, where $D>1$ is an integer such that $D\ne d^2$ and $\sqrt{\mathstrut n}\big/\sqrt{\mathstrut D}=n^{\theta},0<\theta<1/2$. Let $r_f(n)$ be the number of representations of $n$ by $f$. It is proved that $$ r_f (n)=\pi^2\frac n{\sqrt D}\sigma_f(n)+O\biggl(\frac{n^{1+\varepsilon-c(\theta)}}{\sqrt D}\biggr), $$ where $\sigma_f(n)$ is the singular series, $c(\theta)>0$, and $\varepsilon$ is an arbitrarily small positive constant.
@article{ZNSL_2001_276_a13,
author = {O. M. Fomenko},
title = {The representation of integers by positive quaternary quadratic forms},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {291--299},
year = {2001},
volume = {276},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_276_a13/}
}
O. M. Fomenko. The representation of integers by positive quaternary quadratic forms. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 17, Tome 276 (2001), pp. 291-299. http://geodesic.mathdoc.fr/item/ZNSL_2001_276_a13/