Problems of extremal decomposition of the Riemann sphere
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 17, Tome 276 (2001), pp. 253-275 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We apply a variant of the method of the extremal metric to some problems concerning extremal decompositions and related problems. Let $\mathbf a=\{a_1,\dots,a_n\}$ be a system of distinct points on $\overline{\mathbb C}$ and let $\mathscr D(\mathbf a)$ be the family of all systems $\mathbb D=\{D_1,\dots,D_n\}$ of nonoverlapping simply connected domains on $\overline{\mathbb C}$ such that $a_k\in D_k, k=1,\dots,n$. Let $$ J(a)=\max\limits_{\mathbb D\subset\mathscr D(\mathbf a)}\biggl\{2\pi\sum_{k=1}^nM(D_k,a_k)-\frac2{n-1}\sum_{1\le k<l\le n}\log|a_k-a_l|\biggr\}, $$ where $M(D_k,a_k)$ is the reduced module of the domain $D_k$ with respect to the point $a_k$. At present, the problem concerning the value $\max\limits_{\mathbf a}J(a)$ was solved completely for $n=2,3,4$. In this work, we continue the previous author's investigations and consider the case $n=5$. In addition, we consider the problem concerning the maximum of the sum $$ \alpha^2\bigl\{M(D_0,0)+M(D_{n+1},\infty)\bigr\}+\sum_{k=1}^nM(D_k,a_k) $$ in the family $\mathscr D(\mathbf a)$ introduced above, where $\mathbf a=\{0,a_1,\dots,a_n,\infty\}$, $a_k$, $k=1,\dots,n$, are arbitrary points of the circle $|z|=1$, and $\alpha$ is a positive number. We prove that if $\alpha/n\le1/\sqrt8$, then the maximum is attained $\alpha$ only for systems of equidistant points of the circle $|z|=1$. For $\alpha/n=1/\sqrt8$, this result was obtained earlier by Dubinin who applied the method of symmetrization. It is shown that if $n\ge2$, where $\alpha/n\ge1/2$ is an even number, then equidistant points of the circle $|z|=1$ do not realize the indicated maximum.
@article{ZNSL_2001_276_a11,
     author = {G. V. Kuz'mina},
     title = {Problems of extremal decomposition of the {Riemann} sphere},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {253--275},
     year = {2001},
     volume = {276},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_276_a11/}
}
TY  - JOUR
AU  - G. V. Kuz'mina
TI  - Problems of extremal decomposition of the Riemann sphere
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 253
EP  - 275
VL  - 276
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_276_a11/
LA  - ru
ID  - ZNSL_2001_276_a11
ER  - 
%0 Journal Article
%A G. V. Kuz'mina
%T Problems of extremal decomposition of the Riemann sphere
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 253-275
%V 276
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_276_a11/
%G ru
%F ZNSL_2001_276_a11
G. V. Kuz'mina. Problems of extremal decomposition of the Riemann sphere. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 17, Tome 276 (2001), pp. 253-275. http://geodesic.mathdoc.fr/item/ZNSL_2001_276_a11/