On properties of the conformal radius of a domain
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 17, Tome 276 (2001), pp. 237-252 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the function $\rho(z)=\mathscr R(D,z)$, where $\mathscr R(D,z)$ is the conformal radius of a simply connected domain $D$ at a point $z\in D$. We study relations between the values of the function $\rho(z)$ at various points of the domain $D$. In Sec. 1, we establish exact inequalities relating the values of the function $\rho(z)$ in an arbitrary simply connected domain $D\subset\overline{\mathbb C}$ with the position of the conformal center and with the maximal conformal radius of the domain $D$. The same values are related to the values of $\rho(z)$ at another two points of the domain $D$. In Sec. 2, similar results are established for convex domains. This work supplements some recent results of Emel'yanov and Kovalev.
@article{ZNSL_2001_276_a10,
     author = {V. O. Kuznetsov},
     title = {On properties of the conformal radius of a~domain},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {237--252},
     year = {2001},
     volume = {276},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_276_a10/}
}
TY  - JOUR
AU  - V. O. Kuznetsov
TI  - On properties of the conformal radius of a domain
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 237
EP  - 252
VL  - 276
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_276_a10/
LA  - ru
ID  - ZNSL_2001_276_a10
ER  - 
%0 Journal Article
%A V. O. Kuznetsov
%T On properties of the conformal radius of a domain
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 237-252
%V 276
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_276_a10/
%G ru
%F ZNSL_2001_276_a10
V. O. Kuznetsov. On properties of the conformal radius of a domain. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 17, Tome 276 (2001), pp. 237-252. http://geodesic.mathdoc.fr/item/ZNSL_2001_276_a10/