Symmetries of the confluent Heun equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 30, Tome 275 (2001), pp. 55-71

Voir la notice de l'article provenant de la source Math-Net.Ru

The group of the discrete symmetries of the confluent Heun equation is under consideration. This group has as generators the elementary symmetries and the integral symmetries. Such lead to the corresponding symmetries of the connection matrix, which describe the relations between the different fundamental sets of the solutions. The symmetry of the confluent Heun equation with respect to the integral Laplace transform leads to the corresponding relations between the Stokes parameters and connection matrix.
@article{ZNSL_2001_275_a4,
     author = {A. Ya. Kazakov},
     title = {Symmetries of the confluent {Heun} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {55--71},
     publisher = {mathdoc},
     volume = {275},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a4/}
}
TY  - JOUR
AU  - A. Ya. Kazakov
TI  - Symmetries of the confluent Heun equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 55
EP  - 71
VL  - 275
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a4/
LA  - ru
ID  - ZNSL_2001_275_a4
ER  - 
%0 Journal Article
%A A. Ya. Kazakov
%T Symmetries of the confluent Heun equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 55-71
%V 275
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a4/
%G ru
%F ZNSL_2001_275_a4
A. Ya. Kazakov. Symmetries of the confluent Heun equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 30, Tome 275 (2001), pp. 55-71. http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a4/