A local uniqueness in the dynamical inverse problem for the two--velosity system
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 30, Tome 275 (2001), pp. 41-54
Voir la notice de l'article provenant de la source Math-Net.Ru
Dynamical inverse problem for a system with two types of waves propagating with two different velocities is under consideration. Local uniqueness of recovering the matrix potentials is proved.
@article{ZNSL_2001_275_a3,
author = {M. I. Belishev and S. A. Ivanov},
title = {A local uniqueness in the dynamical inverse problem for the two--velosity system},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {41--54},
publisher = {mathdoc},
volume = {275},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a3/}
}
TY - JOUR AU - M. I. Belishev AU - S. A. Ivanov TI - A local uniqueness in the dynamical inverse problem for the two--velosity system JO - Zapiski Nauchnykh Seminarov POMI PY - 2001 SP - 41 EP - 54 VL - 275 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a3/ LA - ru ID - ZNSL_2001_275_a3 ER -
M. I. Belishev; S. A. Ivanov. A local uniqueness in the dynamical inverse problem for the two--velosity system. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 30, Tome 275 (2001), pp. 41-54. http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a3/