On a unitary transform in the space $L_2(\Omega,\mathbb R^3)$ connected with the Weyl decomposition
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 30, Tome 275 (2001), pp. 25-40

Voir la notice de l'article provenant de la source Math-Net.Ru

In the papers devoted to the dynamical inverse problem for the Naxwell system, in the framework of the BC-method, a unitary transform $M$: "solenoidal field$\to$transversal field" was introduced. In this paper $M$ is complemented by a transform $N$: "potential field$\to$longitudinal field." Isometry and completeness of $N$ are established. The transform $U=M\oplus N$ mentioned in the title, turns out to be a unitary oprator.
@article{ZNSL_2001_275_a2,
     author = {M. I. Belishev},
     title = {On a unitary transform in the space $L_2(\Omega,\mathbb R^3)$ connected with the {Weyl} decomposition},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {25--40},
     publisher = {mathdoc},
     volume = {275},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a2/}
}
TY  - JOUR
AU  - M. I. Belishev
TI  - On a unitary transform in the space $L_2(\Omega,\mathbb R^3)$ connected with the Weyl decomposition
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 25
EP  - 40
VL  - 275
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a2/
LA  - ru
ID  - ZNSL_2001_275_a2
ER  - 
%0 Journal Article
%A M. I. Belishev
%T On a unitary transform in the space $L_2(\Omega,\mathbb R^3)$ connected with the Weyl decomposition
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 25-40
%V 275
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a2/
%G ru
%F ZNSL_2001_275_a2
M. I. Belishev. On a unitary transform in the space $L_2(\Omega,\mathbb R^3)$ connected with the Weyl decomposition. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 30, Tome 275 (2001), pp. 25-40. http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a2/