On a unitary transform in the space $L_2(\Omega,\mathbb R^3)$ connected with the Weyl decomposition
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 30, Tome 275 (2001), pp. 25-40
Voir la notice de l'article provenant de la source Math-Net.Ru
In the papers devoted to the dynamical inverse problem for the Naxwell system, in the framework of the BC-method, a unitary transform $M$: "solenoidal field$\to$transversal field" was introduced. In this paper $M$ is complemented by a transform $N$: "potential field$\to$longitudinal field." Isometry and completeness of $N$ are established. The transform $U=M\oplus N$ mentioned in the title, turns out to be a unitary oprator.
@article{ZNSL_2001_275_a2,
author = {M. I. Belishev},
title = {On a unitary transform in the space $L_2(\Omega,\mathbb R^3)$ connected with the {Weyl} decomposition},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {25--40},
publisher = {mathdoc},
volume = {275},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a2/}
}
TY - JOUR AU - M. I. Belishev TI - On a unitary transform in the space $L_2(\Omega,\mathbb R^3)$ connected with the Weyl decomposition JO - Zapiski Nauchnykh Seminarov POMI PY - 2001 SP - 25 EP - 40 VL - 275 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a2/ LA - ru ID - ZNSL_2001_275_a2 ER -
M. I. Belishev. On a unitary transform in the space $L_2(\Omega,\mathbb R^3)$ connected with the Weyl decomposition. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 30, Tome 275 (2001), pp. 25-40. http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a2/