Diffraction of electromagnetic wave on a~small inhomogeneity elliptic form in a~layer
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 30, Tome 275 (2001), pp. 249-257
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of the diffraction of the electromagnatic plane wave, scattered on a small inhomogeneity in a layer, is investigated. The inhomogeneity is supposed to be a elliptic cylinder, focal distance of which is small in comparison with the length of the falling wave. It is proved that the small inhomogeneity radiates as a point source, the power of wich is proportional to the cross-section area and the jumps of the dielectric and magnetic constants on the interfaces.
@article{ZNSL_2001_275_a17,
author = {V. B. Philippov and N. Ya. Kirpichnikova and A. S. Kirpichnikova},
title = {Diffraction of electromagnetic wave on a~small inhomogeneity elliptic form in a~layer},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {249--257},
publisher = {mathdoc},
volume = {275},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a17/}
}
TY - JOUR AU - V. B. Philippov AU - N. Ya. Kirpichnikova AU - A. S. Kirpichnikova TI - Diffraction of electromagnetic wave on a~small inhomogeneity elliptic form in a~layer JO - Zapiski Nauchnykh Seminarov POMI PY - 2001 SP - 249 EP - 257 VL - 275 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a17/ LA - ru ID - ZNSL_2001_275_a17 ER -
%0 Journal Article %A V. B. Philippov %A N. Ya. Kirpichnikova %A A. S. Kirpichnikova %T Diffraction of electromagnetic wave on a~small inhomogeneity elliptic form in a~layer %J Zapiski Nauchnykh Seminarov POMI %D 2001 %P 249-257 %V 275 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a17/ %G ru %F ZNSL_2001_275_a17
V. B. Philippov; N. Ya. Kirpichnikova; A. S. Kirpichnikova. Diffraction of electromagnetic wave on a~small inhomogeneity elliptic form in a~layer. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 30, Tome 275 (2001), pp. 249-257. http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a17/