Exponentially localized solutions to the Klein–Gordon equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 30, Tome 275 (2001), pp. 187-198 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Explicit exponentially localized packet-like solutions to the Klein–Gordon equation are presented for the cases of two and three spacial variables. The appoach is based on complex ray theory. The nonlinear Klein–Gorgon equation is reduced to simple ordinary differential equation of complex solution of the eiconal equation.
@article{ZNSL_2001_275_a13,
     author = {M. V. Perel' and I. V. Fialkovskii},
     title = {Exponentially localized solutions to the {Klein{\textendash}Gordon} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {187--198},
     year = {2001},
     volume = {275},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a13/}
}
TY  - JOUR
AU  - M. V. Perel'
AU  - I. V. Fialkovskii
TI  - Exponentially localized solutions to the Klein–Gordon equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 187
EP  - 198
VL  - 275
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a13/
LA  - ru
ID  - ZNSL_2001_275_a13
ER  - 
%0 Journal Article
%A M. V. Perel'
%A I. V. Fialkovskii
%T Exponentially localized solutions to the Klein–Gordon equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 187-198
%V 275
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a13/
%G ru
%F ZNSL_2001_275_a13
M. V. Perel'; I. V. Fialkovskii. Exponentially localized solutions to the Klein–Gordon equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 30, Tome 275 (2001), pp. 187-198. http://geodesic.mathdoc.fr/item/ZNSL_2001_275_a13/