Overgroups of $\mathrm{EO}(2l,R)$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 7, Tome 272 (2000), pp. 68-85

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative ring with 1, $2\in R^*$, and $l\ge 3$. We describe subgroups of the general linear group $\mathrm{GL}(n,R)$ containing the split elementary orthogonal group $\mathrm{EO}(2l,R)$. For every intermediate subgroup $H$ there exists a unique maximal ideal $A\unlhd R$ such that $E(2l,R,A)\le H$, and moreover $H$ normalises $\mathrm{EO}(2l,R)E(2l,R,A)$. In the case when $R=K$ is a field, similar results have been obtained earlier by Dye, King, Li Shangzhi and Bashkirov.
@article{ZNSL_2000_272_a3,
     author = {N. A. Vavilov and V. A. Petrov},
     title = {Overgroups of $\mathrm{EO}(2l,R)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {68--85},
     publisher = {mathdoc},
     volume = {272},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a3/}
}
TY  - JOUR
AU  - N. A. Vavilov
AU  - V. A. Petrov
TI  - Overgroups of $\mathrm{EO}(2l,R)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 68
EP  - 85
VL  - 272
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a3/
LA  - ru
ID  - ZNSL_2000_272_a3
ER  - 
%0 Journal Article
%A N. A. Vavilov
%A V. A. Petrov
%T Overgroups of $\mathrm{EO}(2l,R)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 68-85
%V 272
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a3/
%G ru
%F ZNSL_2000_272_a3
N. A. Vavilov; V. A. Petrov. Overgroups of $\mathrm{EO}(2l,R)$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 7, Tome 272 (2000), pp. 68-85. http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a3/