Multilinear Lie quantum operations
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 7, Tome 272 (2000), pp. 321-340

Voir la notice de l'article provenant de la source Math-Net.Ru

In is proved that if the existence condition is fulfilled the dimension of the all $n$-linear Lie quantum operations is lying between $(n-2)!$ and $(n-1)!$; moreover, the low bound is attained if the intersection of all consistent (i.e., satisfying the existence condition) subsets of a given set of “quantum” variables is nonemply. The upper bound is attained if all the subsets are consistents. The space of multilinear Lie quantum operations almost aloways is generated by symmetric operations. All exceptional cases are given. In particular, the space of general $n$-linear Lie operations is always generated by general symmetric Lie quantum operations.
@article{ZNSL_2000_272_a20,
     author = {V. K. Kharchenko},
     title = {Multilinear {Lie} quantum operations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {321--340},
     publisher = {mathdoc},
     volume = {272},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a20/}
}
TY  - JOUR
AU  - V. K. Kharchenko
TI  - Multilinear Lie quantum operations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 321
EP  - 340
VL  - 272
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a20/
LA  - ru
ID  - ZNSL_2000_272_a20
ER  - 
%0 Journal Article
%A V. K. Kharchenko
%T Multilinear Lie quantum operations
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 321-340
%V 272
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a20/
%G ru
%F ZNSL_2000_272_a20
V. K. Kharchenko. Multilinear Lie quantum operations. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 7, Tome 272 (2000), pp. 321-340. http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a20/