On a theorem of Grothendieck
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 7, Tome 272 (2000), pp. 286-293

Voir la notice de l'article provenant de la source Math-Net.Ru

It is considered a smooth projective morphism $p\colon T\to S$ to a smooth variety $S$. It is proved, in particular, the following result. The total direct image $Rp_*(\mathbb Z/n\mathbb Z)$ of the constant étale sheaf $\mathbb Z/n\mathbb Z$ is locally for Zariski topology quasi-isomorphic to a bounded complex $\mathscr L$ on $S$ consisting of locally constant constructible étale $\mathbb Z/n\mathbb Z$-module sheaves.
@article{ZNSL_2000_272_a17,
     author = {I. A. Panin and A. L. Smirnov},
     title = {On a theorem of {Grothendieck}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {286--293},
     publisher = {mathdoc},
     volume = {272},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a17/}
}
TY  - JOUR
AU  - I. A. Panin
AU  - A. L. Smirnov
TI  - On a theorem of Grothendieck
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 286
EP  - 293
VL  - 272
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a17/
LA  - en
ID  - ZNSL_2000_272_a17
ER  - 
%0 Journal Article
%A I. A. Panin
%A A. L. Smirnov
%T On a theorem of Grothendieck
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 286-293
%V 272
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a17/
%G en
%F ZNSL_2000_272_a17
I. A. Panin; A. L. Smirnov. On a theorem of Grothendieck. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 7, Tome 272 (2000), pp. 286-293. http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a17/