Subgroups of the general linear group containing an elementary subgroup in a~reducible representation
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 7, Tome 272 (2000), pp. 227-233

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative ring, $G=\mathrm{GL}(mn,R)$ be the general linear group of degree $mn$ over $R$. We construct and study a wide class of overgroups of the elementary group $E^m(n,R)\cong E(n,R)$ in the representation which is the direct sum of $m$ copies of the vector representation. When $R=K$ is a field and $n$ is large enough with respect to $m$, this allows us to give a complete description of all subgroups intermediate between $E^m(n,K)$ and $G$. This is a very broad generalization of some results by Z. I. Borewicz, N. A. Vavilov and others.
@article{ZNSL_2000_272_a11,
     author = {A. I. Korotkevich},
     title = {Subgroups of the general linear group containing an elementary subgroup in a~reducible representation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {227--233},
     publisher = {mathdoc},
     volume = {272},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a11/}
}
TY  - JOUR
AU  - A. I. Korotkevich
TI  - Subgroups of the general linear group containing an elementary subgroup in a~reducible representation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 227
EP  - 233
VL  - 272
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a11/
LA  - ru
ID  - ZNSL_2000_272_a11
ER  - 
%0 Journal Article
%A A. I. Korotkevich
%T Subgroups of the general linear group containing an elementary subgroup in a~reducible representation
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 227-233
%V 272
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a11/
%G ru
%F ZNSL_2000_272_a11
A. I. Korotkevich. Subgroups of the general linear group containing an elementary subgroup in a~reducible representation. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 7, Tome 272 (2000), pp. 227-233. http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a11/