Subgroups of the general linear group containing an elementary subgroup in a~reducible representation
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 7, Tome 272 (2000), pp. 227-233
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a commutative ring, $G=\mathrm{GL}(mn,R)$ be the general linear group of degree $mn$ over $R$. We construct and study a wide class of overgroups of the elementary group $E^m(n,R)\cong E(n,R)$ in the representation which is the direct sum of $m$ copies of the vector representation. When $R=K$ is a field and $n$ is large enough with respect to $m$, this allows us to give a complete description of all subgroups intermediate between $E^m(n,K)$ and $G$. This is a very broad generalization of some results by Z. I. Borewicz, N. A. Vavilov and others.
@article{ZNSL_2000_272_a11,
author = {A. I. Korotkevich},
title = {Subgroups of the general linear group containing an elementary subgroup in a~reducible representation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {227--233},
publisher = {mathdoc},
volume = {272},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a11/}
}
TY - JOUR AU - A. I. Korotkevich TI - Subgroups of the general linear group containing an elementary subgroup in a~reducible representation JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 227 EP - 233 VL - 272 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a11/ LA - ru ID - ZNSL_2000_272_a11 ER -
A. I. Korotkevich. Subgroups of the general linear group containing an elementary subgroup in a~reducible representation. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 7, Tome 272 (2000), pp. 227-233. http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a11/