Regularity to stationary weak solutions in the theory of generalized Newtonian fluids with energy transfer
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Tome 271 (2000), pp. 122-150

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we prove regularity results for weak solutions to some stationary problems arising in the theory of generalized Newtonian fluids with energy transfer. Namely, we prove that these solutions are strong. In two-dimensional case we prove the Hölder continuity of the first gradient of solutions.
@article{ZNSL_2000_271_a8,
     author = {L. Consiglieri and T. N. Shilkin},
     title = {Regularity to stationary weak solutions in the theory of generalized {Newtonian} fluids with energy transfer},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {122--150},
     publisher = {mathdoc},
     volume = {271},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a8/}
}
TY  - JOUR
AU  - L. Consiglieri
AU  - T. N. Shilkin
TI  - Regularity to stationary weak solutions in the theory of generalized Newtonian fluids with energy transfer
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 122
EP  - 150
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a8/
LA  - en
ID  - ZNSL_2000_271_a8
ER  - 
%0 Journal Article
%A L. Consiglieri
%A T. N. Shilkin
%T Regularity to stationary weak solutions in the theory of generalized Newtonian fluids with energy transfer
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 122-150
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a8/
%G en
%F ZNSL_2000_271_a8
L. Consiglieri; T. N. Shilkin. Regularity to stationary weak solutions in the theory of generalized Newtonian fluids with energy transfer. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Tome 271 (2000), pp. 122-150. http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a8/