On attraktors for $\varepsilon$-approximations of equations described non-Newtonian flows
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Tome 271 (2000), pp. 114-121

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of minimal global $B$-attractors for $\varepsilon$-approximations of equations decribed 2-dimensional Oldroyd flows and 3-dimensional Kelvin-Voight flows. In both cases the attractors are compact finite dimensional connected sets.
@article{ZNSL_2000_271_a7,
     author = {N. A. Karazeeva},
     title = {On attraktors for $\varepsilon$-approximations of equations described {non-Newtonian} flows},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {114--121},
     publisher = {mathdoc},
     volume = {271},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a7/}
}
TY  - JOUR
AU  - N. A. Karazeeva
TI  - On attraktors for $\varepsilon$-approximations of equations described non-Newtonian flows
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 114
EP  - 121
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a7/
LA  - ru
ID  - ZNSL_2000_271_a7
ER  - 
%0 Journal Article
%A N. A. Karazeeva
%T On attraktors for $\varepsilon$-approximations of equations described non-Newtonian flows
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 114-121
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a7/
%G ru
%F ZNSL_2000_271_a7
N. A. Karazeeva. On attraktors for $\varepsilon$-approximations of equations described non-Newtonian flows. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Tome 271 (2000), pp. 114-121. http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a7/