On attraktors for $\varepsilon$-approximations of equations described non-Newtonian flows
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Tome 271 (2000), pp. 114-121
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the existence of minimal global $B$-attractors for $\varepsilon$-approximations of equations decribed 2-dimensional Oldroyd flows and 3-dimensional Kelvin-Voight flows. In both cases the attractors are compact finite dimensional connected sets.
@article{ZNSL_2000_271_a7,
author = {N. A. Karazeeva},
title = {On attraktors for $\varepsilon$-approximations of equations described {non-Newtonian} flows},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {114--121},
publisher = {mathdoc},
volume = {271},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a7/}
}
TY - JOUR AU - N. A. Karazeeva TI - On attraktors for $\varepsilon$-approximations of equations described non-Newtonian flows JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 114 EP - 121 VL - 271 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a7/ LA - ru ID - ZNSL_2000_271_a7 ER -
N. A. Karazeeva. On attraktors for $\varepsilon$-approximations of equations described non-Newtonian flows. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Tome 271 (2000), pp. 114-121. http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a7/