Boundary estimates for solutions to the parabolic free boundary problem
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Tome 271 (2000), pp. 39-55

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $u$ and $\varOmega$ (an open set in $\mathbb R^{n+1}_+=\{(x,t):x\in\mathbb R^n,\ t\in\mathbb R^1,\ x_1>0\}$, $n\geqslant2$) solve the following problem: $$ H(u)=\chi_{\varOmega}, \quad u=|Du|=0 \quad\text{in}\quad Q_1^+\setminus\varOmega, \quad u=0 \quad\text{on}\quad \Pi\cap Q_1, $$ where $H=\Delta-\partial_t$ is the heat operator, $\chi_{\varOmega}$ denotes the characteristic function of $\varOmega$, $Q_1$ is the unit cylinder in $\mathbb R^{n+1}$, $Q_1^+=Q_1\cap\mathbb R^{n+1}_+$, $\Pi=\{(x,t):x_1=0\}$, and the first equation is satisfied in the sense of distributions. We obtain the optimal regularity of the function $u$, i.e., we show that $u\in C^{1,1}_x\cap C^{0,1}_t$.
@article{ZNSL_2000_271_a2,
     author = {D. E. Apushkinskaya and H. Shahgholian and N. N. Ural'tseva},
     title = {Boundary estimates for solutions to the parabolic free boundary problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {39--55},
     publisher = {mathdoc},
     volume = {271},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a2/}
}
TY  - JOUR
AU  - D. E. Apushkinskaya
AU  - H. Shahgholian
AU  - N. N. Ural'tseva
TI  - Boundary estimates for solutions to the parabolic free boundary problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 39
EP  - 55
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a2/
LA  - en
ID  - ZNSL_2000_271_a2
ER  - 
%0 Journal Article
%A D. E. Apushkinskaya
%A H. Shahgholian
%A N. N. Ural'tseva
%T Boundary estimates for solutions to the parabolic free boundary problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 39-55
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a2/
%G en
%F ZNSL_2000_271_a2
D. E. Apushkinskaya; H. Shahgholian; N. N. Ural'tseva. Boundary estimates for solutions to the parabolic free boundary problem. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Tome 271 (2000), pp. 39-55. http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a2/