Boundary estimates for solutions to the parabolic free boundary problem
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Tome 271 (2000), pp. 39-55
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $u$ and $\varOmega$ (an open set in $\mathbb R^{n+1}_+=\{(x,t):x\in\mathbb R^n,\ t\in\mathbb R^1,\ x_1>0\}$, $n\geqslant2$) solve the following problem:
$$
H(u)=\chi_{\varOmega}, \quad u=|Du|=0 \quad\text{in}\quad Q_1^+\setminus\varOmega, \quad
u=0 \quad\text{on}\quad \Pi\cap Q_1,
$$
where $H=\Delta-\partial_t$ is the heat operator, $\chi_{\varOmega}$ denotes the characteristic function of $\varOmega$, $Q_1$ is the unit cylinder in $\mathbb R^{n+1}$, $Q_1^+=Q_1\cap\mathbb R^{n+1}_+$,
$\Pi=\{(x,t):x_1=0\}$, and the first equation is satisfied in the sense of distributions. We obtain the optimal regularity of the function $u$, i.e., we show that $u\in C^{1,1}_x\cap C^{0,1}_t$.
@article{ZNSL_2000_271_a2,
author = {D. E. Apushkinskaya and H. Shahgholian and N. N. Ural'tseva},
title = {Boundary estimates for solutions to the parabolic free boundary problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {39--55},
publisher = {mathdoc},
volume = {271},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a2/}
}
TY - JOUR AU - D. E. Apushkinskaya AU - H. Shahgholian AU - N. N. Ural'tseva TI - Boundary estimates for solutions to the parabolic free boundary problem JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 39 EP - 55 VL - 271 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a2/ LA - en ID - ZNSL_2000_271_a2 ER -
%0 Journal Article %A D. E. Apushkinskaya %A H. Shahgholian %A N. N. Ural'tseva %T Boundary estimates for solutions to the parabolic free boundary problem %J Zapiski Nauchnykh Seminarov POMI %D 2000 %P 39-55 %V 271 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a2/ %G en %F ZNSL_2000_271_a2
D. E. Apushkinskaya; H. Shahgholian; N. N. Ural'tseva. Boundary estimates for solutions to the parabolic free boundary problem. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Tome 271 (2000), pp. 39-55. http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a2/