Estimates of deviations from exact solutions of elliptic variational inequalities
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Tome 271 (2000), pp. 188-203

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present a method of deriving majorants of the difference between exact solutions of elliptic type variational inequalities and any given functions lying in the admissible functional class of the problem under consideration. We analyse three classical problems associated with stationary variational inequalities: a variational problem with two obstacles, elasto-plastic torsion problem and a problem with friction type boundary conditions. The majorants are obtained by a modification of duality technique earlier used for variational problems with uniformly convex functionals [9–11]. These majorants naturally reflects properties of exact solutions and possess necessary continuity conditions.
@article{ZNSL_2000_271_a12,
     author = {S. I. Repin},
     title = {Estimates of  deviations from exact solutions of elliptic variational inequalities},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {188--203},
     publisher = {mathdoc},
     volume = {271},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a12/}
}
TY  - JOUR
AU  - S. I. Repin
TI  - Estimates of  deviations from exact solutions of elliptic variational inequalities
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 188
EP  - 203
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a12/
LA  - en
ID  - ZNSL_2000_271_a12
ER  - 
%0 Journal Article
%A S. I. Repin
%T Estimates of  deviations from exact solutions of elliptic variational inequalities
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 188-203
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a12/
%G en
%F ZNSL_2000_271_a12
S. I. Repin. Estimates of  deviations from exact solutions of elliptic variational inequalities. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Tome 271 (2000), pp. 188-203. http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a12/