Similarity of a triangular operator to a diagonal one
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 201-241
Voir la notice du chapitre de livre
A series of sufficient conditions are given for the similarity of the nonselfadjoint operator $A=G+iV^{1/2}JV^{1/2}$ (with a well-defined imaginary part) to a selfadjoint operator. Next, sufficient conditions (becoming also necessary in the dissipative case) are given for the triangular operator $f\mapsto\alpha(x)f(x)+ i\int^1_x k(x,t)f(t)d\mu(t)$ to be similar to a selfadjoint operator.
@article{ZNSL_2000_270_a8,
author = {M. M. Malamud},
title = {Similarity of a~triangular operator to a~diagonal one},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {201--241},
year = {2000},
volume = {270},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a8/}
}
M. M. Malamud. Similarity of a triangular operator to a diagonal one. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 201-241. http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a8/