Polynomial approximation in the $L^p$-metric on disjoint segments
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 175-200
Voir la notice du chapitre de livre
The function Sobolev class on the union of a finite number of disjoint segments is described in terms of the rate of polynomial approximation.
@article{ZNSL_2000_270_a7,
author = {N. Yu. Krasheninnikova and N. A. Shirokov},
title = {Polynomial approximation in the $L^p$-metric on disjoint segments},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {175--200},
year = {2000},
volume = {270},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a7/}
}
N. Yu. Krasheninnikova; N. A. Shirokov. Polynomial approximation in the $L^p$-metric on disjoint segments. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 175-200. http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a7/