Polynomial approximation in the $L^p$-metric on disjoint segments
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 175-200
Voir la notice de l'article provenant de la source Math-Net.Ru
The function Sobolev class on the union of a finite number of disjoint segments is described in terms of the rate of polynomial approximation.
@article{ZNSL_2000_270_a7,
author = {N. Yu. Krasheninnikova and N. A. Shirokov},
title = {Polynomial approximation in the $L^p$-metric on disjoint segments},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {175--200},
publisher = {mathdoc},
volume = {270},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a7/}
}
TY - JOUR AU - N. Yu. Krasheninnikova AU - N. A. Shirokov TI - Polynomial approximation in the $L^p$-metric on disjoint segments JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 175 EP - 200 VL - 270 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a7/ LA - ru ID - ZNSL_2000_270_a7 ER -
N. Yu. Krasheninnikova; N. A. Shirokov. Polynomial approximation in the $L^p$-metric on disjoint segments. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 175-200. http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a7/