Polynomial approximation in the $L^p$-metric on disjoint segments
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 175-200

Voir la notice de l'article provenant de la source Math-Net.Ru

The function Sobolev class on the union of a finite number of disjoint segments is described in terms of the rate of polynomial approximation.
@article{ZNSL_2000_270_a7,
     author = {N. Yu. Krasheninnikova and N. A. Shirokov},
     title = {Polynomial approximation in the $L^p$-metric on disjoint segments},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {175--200},
     publisher = {mathdoc},
     volume = {270},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a7/}
}
TY  - JOUR
AU  - N. Yu. Krasheninnikova
AU  - N. A. Shirokov
TI  - Polynomial approximation in the $L^p$-metric on disjoint segments
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 175
EP  - 200
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a7/
LA  - ru
ID  - ZNSL_2000_270_a7
ER  - 
%0 Journal Article
%A N. Yu. Krasheninnikova
%A N. A. Shirokov
%T Polynomial approximation in the $L^p$-metric on disjoint segments
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 175-200
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a7/
%G ru
%F ZNSL_2000_270_a7
N. Yu. Krasheninnikova; N. A. Shirokov. Polynomial approximation in the $L^p$-metric on disjoint segments. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 175-200. http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a7/