Similarity problem for certain martingale uniform algebras
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 90-102
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $A$ be a proper uniform algebra admitting a nontrivial bounded point derivation. Then for a certain uniform algebra $A_1$ (related to $A$ much as the algebra of Hardy martingales on $\mathbb T^\infty$ is related to the disk algebra) there exists a bounded but not completely bounded homomorphism $\varphi\colon A_1\to B(H)$.
			
            
            
            
          
        
      @article{ZNSL_2000_270_a4,
     author = {S. V. Kislyakov},
     title = {Similarity problem for certain martingale uniform algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {90--102},
     publisher = {mathdoc},
     volume = {270},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a4/}
}
                      
                      
                    S. V. Kislyakov. Similarity problem for certain martingale uniform algebras. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 90-102. http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a4/
