Mixed Stekloff eigenvalue problem and new extremal properties of the Grötzsch ring
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 51-79
Voir la notice du chapitre de livre
We study the mixed Stekloff eigenvalue problem in doubly-connected domains. Using circular symmetrization and a distortion theorem on conformal mapping of an annulus, we find a lower bound for the first eigenvalue that is sharp for the Grötzsch ring. We solve also an extremal problem for some polygonal doubly-connected domains and prove some results concerning the existence of a closed nodal line.
@article{ZNSL_2000_270_a2,
author = {B. Dittmar and A. Yu. Solynin},
title = {Mixed {Stekloff} eigenvalue problem and new extremal properties of the {Gr\"otzsch} ring},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {51--79},
year = {2000},
volume = {270},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a2/}
}
B. Dittmar; A. Yu. Solynin. Mixed Stekloff eigenvalue problem and new extremal properties of the Grötzsch ring. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 51-79. http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a2/