On the similarity of some singular differential operators to selfadjoint ones
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 336-349
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The singular differential operator $Lf(x)=-\operatorname{sign}x\frac{d^2f(x)}{dx^2}+p(x)f(x)$ is studied. It is proved that if the second moment of $p$ is finite and $L$ has no nonreal eigenvalues, then $L$ is similar to a selfadjoint operator. The proof is based upon an integral resolvent criterion for the similarity applied to a wide class of functions $p(x)$.
			
            
            
            
          
        
      @article{ZNSL_2000_270_a17,
     author = {M. M. Faddeev and R. G. Shterenberg},
     title = {On the similarity of some singular differential operators to selfadjoint ones},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {336--349},
     publisher = {mathdoc},
     volume = {270},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a17/}
}
                      
                      
                    TY - JOUR AU - M. M. Faddeev AU - R. G. Shterenberg TI - On the similarity of some singular differential operators to selfadjoint ones JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 336 EP - 349 VL - 270 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a17/ LA - ru ID - ZNSL_2000_270_a17 ER -
M. M. Faddeev; R. G. Shterenberg. On the similarity of some singular differential operators to selfadjoint ones. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 336-349. http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a17/
