The discrete spectrum of differential operators in the spectral gaps in the case of nonnegative perturbations of
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 325-335

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a selfadjoint, elliptic second order differential operator, let $(\alpha,\beta)$ be the inner gap in the spectrum of $A$; let $B(t)=A+tW^*W$, where $W$ is a differential operator of higher order. Conditions are obtained that guarantee that the spectrum of the operator $B(t)$ in the gap $(\alpha,\beta)$ be discrete, or do not accumulate to the right edge of the spectral gap, or be finite. The quantity $N(\lambda,A,W,\tau)$, $\lambda\in(\alpha,\beta)$, $\tau>0$ (the number of eigenvalues of the operator $B(t)$ having passed the point $\lambda\in(\alpha,\beta)$ as $t$ increases from 0 to $\tau$) is considered. Estimates for $N(\lambda,A,W,\tau)$ are obtained. For the perturbation $W^*W$ of special from, the asymptotics of $N(\lambda,A,W,\tau)$, $\tau\to+\infty$, is given.
@article{ZNSL_2000_270_a16,
     author = {V. A. Sloushch},
     title = {The discrete spectrum of differential operators in the spectral gaps in the case of nonnegative perturbations of},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {325--335},
     publisher = {mathdoc},
     volume = {270},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a16/}
}
TY  - JOUR
AU  - V. A. Sloushch
TI  - The discrete spectrum of differential operators in the spectral gaps in the case of nonnegative perturbations of
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 325
EP  - 335
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a16/
LA  - ru
ID  - ZNSL_2000_270_a16
ER  - 
%0 Journal Article
%A V. A. Sloushch
%T The discrete spectrum of differential operators in the spectral gaps in the case of nonnegative perturbations of
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 325-335
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a16/
%G ru
%F ZNSL_2000_270_a16
V. A. Sloushch. The discrete spectrum of differential operators in the spectral gaps in the case of nonnegative perturbations of. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 325-335. http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a16/