Asymptotical properties of harmonic and $M$-harmonic functions near the boundary of the unit sphere
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 309-316

Voir la notice de l'article provenant de la source Math-Net.Ru

On the boundary of the complex $n$-ball, there are two a natural notions of Hausdorff dimension, namely, those related to the Euclidean and the Koranyi metric. It is shown that “Riesz decompositions” relative to these two dimension scales are linked rigidly for the measures that are boundary values of pluriharmonic functions in the ball.
@article{ZNSL_2000_270_a14,
     author = {M. M. Roginskaya},
     title = {Asymptotical properties of harmonic and $M$-harmonic functions near the boundary of the unit sphere},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {309--316},
     publisher = {mathdoc},
     volume = {270},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a14/}
}
TY  - JOUR
AU  - M. M. Roginskaya
TI  - Asymptotical properties of harmonic and $M$-harmonic functions near the boundary of the unit sphere
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 309
EP  - 316
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a14/
LA  - ru
ID  - ZNSL_2000_270_a14
ER  - 
%0 Journal Article
%A M. M. Roginskaya
%T Asymptotical properties of harmonic and $M$-harmonic functions near the boundary of the unit sphere
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 309-316
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a14/
%G ru
%F ZNSL_2000_270_a14
M. M. Roginskaya. Asymptotical properties of harmonic and $M$-harmonic functions near the boundary of the unit sphere. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 309-316. http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a14/