Asymptotical properties of harmonic and $M$-harmonic functions near the boundary of the unit sphere
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 309-316
Voir la notice de l'article provenant de la source Math-Net.Ru
On the boundary of the complex $n$-ball, there are two a natural notions of Hausdorff dimension, namely, those related to the Euclidean and the Koranyi metric. It is shown that “Riesz decompositions” relative to these two dimension scales are linked rigidly for the measures that are boundary values of pluriharmonic functions in the ball.
@article{ZNSL_2000_270_a14,
author = {M. M. Roginskaya},
title = {Asymptotical properties of harmonic and $M$-harmonic functions near the boundary of the unit sphere},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {309--316},
publisher = {mathdoc},
volume = {270},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a14/}
}
TY - JOUR AU - M. M. Roginskaya TI - Asymptotical properties of harmonic and $M$-harmonic functions near the boundary of the unit sphere JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 309 EP - 316 VL - 270 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a14/ LA - ru ID - ZNSL_2000_270_a14 ER -
M. M. Roginskaya. Asymptotical properties of harmonic and $M$-harmonic functions near the boundary of the unit sphere. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 309-316. http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a14/