Expansion of the element~$\sin a$ in exponentials for Hermitian~$a$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 253-257
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be a complex Banach algebra with identity and $a\in A$ a Hermitian element. An interpolation formula is proved expressing $\sin a$ in terms of exponentials and implying, in particular, the identity $\|\sin a\|=|\sin a|$.
@article{ZNSL_2000_270_a10,
author = {H. S. Mustafaev and M. T. Karaev},
title = {Expansion of the element~$\sin a$ in exponentials for {Hermitian~}$a$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {253--257},
publisher = {mathdoc},
volume = {270},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a10/}
}
TY - JOUR AU - H. S. Mustafaev AU - M. T. Karaev TI - Expansion of the element~$\sin a$ in exponentials for Hermitian~$a$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 253 EP - 257 VL - 270 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a10/ LA - ru ID - ZNSL_2000_270_a10 ER -
H. S. Mustafaev; M. T. Karaev. Expansion of the element~$\sin a$ in exponentials for Hermitian~$a$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 253-257. http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a10/