Davenport's theorem in the theory of irregularities of point distribution
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 16, Tome 269 (2000), pp. 339-353

Voir la notice de l'article provenant de la source Math-Net.Ru

We study distributions ${\mathscr D}_N$ of $N$ points in the unit square $U^2$ with a minimal order of the $L_2$-discrepancy ${\mathscr L}_2[{\mathscr D}_N]$, where the constant $C$ is independent of $N$. We introduce an approach using Walsh functions that admits generalization to higher dimensions
@article{ZNSL_2000_269_a22,
     author = {W. W. L. Chen and M. M. Skriganov},
     title = {Davenport's theorem in the theory of irregularities of point distribution},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {339--353},
     publisher = {mathdoc},
     volume = {269},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a22/}
}
TY  - JOUR
AU  - W. W. L. Chen
AU  - M. M. Skriganov
TI  - Davenport's theorem in the theory of irregularities of point distribution
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 339
EP  - 353
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a22/
LA  - en
ID  - ZNSL_2000_269_a22
ER  - 
%0 Journal Article
%A W. W. L. Chen
%A M. M. Skriganov
%T Davenport's theorem in the theory of irregularities of point distribution
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 339-353
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a22/
%G en
%F ZNSL_2000_269_a22
W. W. L. Chen; M. M. Skriganov. Davenport's theorem in the theory of irregularities of point distribution. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 16, Tome 269 (2000), pp. 339-353. http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a22/