Davenport's theorem in the theory of irregularities of point distribution
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 16, Tome 269 (2000), pp. 339-353
Voir la notice du chapitre de livre
We study distributions ${\mathscr D}_N$ of $N$ points in the unit square $U^2$ with a minimal order of the $L_2$-discrepancy ${\mathscr L}_2[{\mathscr D}_N], where the constant $C$ is independent of $N$. We introduce an approach using Walsh functions that admits generalization to higher dimensions
@article{ZNSL_2000_269_a22,
author = {W. W. L. Chen and M. M. Skriganov},
title = {Davenport's theorem in the theory of irregularities of point distribution},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {339--353},
year = {2000},
volume = {269},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a22/}
}
W. W. L. Chen; M. M. Skriganov. Davenport's theorem in the theory of irregularities of point distribution. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 16, Tome 269 (2000), pp. 339-353. http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a22/