Davenport's theorem in the theory of irregularities of point distribution
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 16, Tome 269 (2000), pp. 339-353
Voir la notice de l'article provenant de la source Math-Net.Ru
We study distributions ${\mathscr D}_N$ of $N$ points in the unit square $U^2$ with a minimal order of the
$L_2$-discrepancy ${\mathscr L}_2[{\mathscr D}_N]$, where the constant $C$ is independent of $N$. We introduce an approach using Walsh functions that admits generalization to higher dimensions
@article{ZNSL_2000_269_a22,
author = {W. W. L. Chen and M. M. Skriganov},
title = {Davenport's theorem in the theory of irregularities of point distribution},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {339--353},
publisher = {mathdoc},
volume = {269},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a22/}
}
TY - JOUR AU - W. W. L. Chen AU - M. M. Skriganov TI - Davenport's theorem in the theory of irregularities of point distribution JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 339 EP - 353 VL - 269 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a22/ LA - en ID - ZNSL_2000_269_a22 ER -
W. W. L. Chen; M. M. Skriganov. Davenport's theorem in the theory of irregularities of point distribution. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 16, Tome 269 (2000), pp. 339-353. http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a22/