Fredholm determinant representation for the partition function of the six-vertex model
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 16, Tome 269 (2000), pp. 308-321

Voir la notice de l'article provenant de la source Math-Net.Ru

The six-vertex model with domain wallboundary conditions is considered. A Fremholm determinant representation for the partition function of the model is ontained. The kernel of the corresponding integral operator depends on Laguerre polynomials.
@article{ZNSL_2000_269_a20,
     author = {N. A. Slavnov},
     title = {Fredholm determinant representation for the partition function of the six-vertex model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {308--321},
     publisher = {mathdoc},
     volume = {269},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a20/}
}
TY  - JOUR
AU  - N. A. Slavnov
TI  - Fredholm determinant representation for the partition function of the six-vertex model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 308
EP  - 321
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a20/
LA  - ru
ID  - ZNSL_2000_269_a20
ER  - 
%0 Journal Article
%A N. A. Slavnov
%T Fredholm determinant representation for the partition function of the six-vertex model
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 308-321
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a20/
%G ru
%F ZNSL_2000_269_a20
N. A. Slavnov. Fredholm determinant representation for the partition function of the six-vertex model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 16, Tome 269 (2000), pp. 308-321. http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a20/