Fredholm determinant representation for the partition function of the six-vertex model
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 16, Tome 269 (2000), pp. 308-321
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The six-vertex model with domain wallboundary conditions is considered. A Fremholm determinant representation for the partition function of the model is ontained. The kernel of the corresponding integral operator depends on Laguerre polynomials.
			
            
            
            
          
        
      @article{ZNSL_2000_269_a20,
     author = {N. A. Slavnov},
     title = {Fredholm determinant representation for the partition function of the six-vertex model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {308--321},
     publisher = {mathdoc},
     volume = {269},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a20/}
}
                      
                      
                    TY - JOUR AU - N. A. Slavnov TI - Fredholm determinant representation for the partition function of the six-vertex model JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 308 EP - 321 VL - 269 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a20/ LA - ru ID - ZNSL_2000_269_a20 ER -
N. A. Slavnov. Fredholm determinant representation for the partition function of the six-vertex model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 16, Tome 269 (2000), pp. 308-321. http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a20/
