Quantum matrices of coefficients of a discrete linear problem
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 16, Tome 269 (2000), pp. 292-307

Voir la notice de l'article provenant de la source Math-Net.Ru

Some of the most general properties of the quantum matrices is discussed. These matrices of coefficients of the quantum discrete auxiliary linear problem for three-dimensional integrable models. An universal functional equation for the quantum determinant is obtained in the case of a finite-dimensional representation of a local Weyl algebra.
@article{ZNSL_2000_269_a19,
     author = {S. M. Sergeev},
     title = {Quantum matrices of  coefficients of a discrete linear problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {292--307},
     publisher = {mathdoc},
     volume = {269},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a19/}
}
TY  - JOUR
AU  - S. M. Sergeev
TI  - Quantum matrices of  coefficients of a discrete linear problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 292
EP  - 307
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a19/
LA  - ru
ID  - ZNSL_2000_269_a19
ER  - 
%0 Journal Article
%A S. M. Sergeev
%T Quantum matrices of  coefficients of a discrete linear problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 292-307
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a19/
%G ru
%F ZNSL_2000_269_a19
S. M. Sergeev. Quantum matrices of  coefficients of a discrete linear problem. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 16, Tome 269 (2000), pp. 292-307. http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a19/