Time-dependent temperature correlators of local spins of the one-dimensional Heisenberg $XY$ chain
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 16, Tome 269 (2000), pp. 219-261

Voir la notice de l'article provenant de la source Math-Net.Ru

Time-dependent temperature correlators of the anisotropic Heisenberg $XY$ chain are calculated by making use of technique of integration over Grassmann variables. For the chain of length $M$ the correlators are represented as determinants of $2M\times2M$ matrices. In the thermodynamic limit the correlation functions are expressed in terms of the Fredholm determinants of linear integral operators with a matrix kernel.
@article{ZNSL_2000_269_a16,
     author = {V. S. Kapitonov and A. G. Pronko},
     title = {Time-dependent temperature correlators of local spins of the one-dimensional {Heisenberg} $XY$ chain},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {219--261},
     publisher = {mathdoc},
     volume = {269},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a16/}
}
TY  - JOUR
AU  - V. S. Kapitonov
AU  - A. G. Pronko
TI  - Time-dependent temperature correlators of local spins of the one-dimensional Heisenberg $XY$ chain
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 219
EP  - 261
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a16/
LA  - ru
ID  - ZNSL_2000_269_a16
ER  - 
%0 Journal Article
%A V. S. Kapitonov
%A A. G. Pronko
%T Time-dependent temperature correlators of local spins of the one-dimensional Heisenberg $XY$ chain
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 219-261
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a16/
%G ru
%F ZNSL_2000_269_a16
V. S. Kapitonov; A. G. Pronko. Time-dependent temperature correlators of local spins of the one-dimensional Heisenberg $XY$ chain. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 16, Tome 269 (2000), pp. 219-261. http://geodesic.mathdoc.fr/item/ZNSL_2000_269_a16/